SSVEP Extraction Based on the Similarity of Background EEG

نویسنده

  • Zhenghua Wu
چکیده

Steady-state Visual Evoked Potential (SSVEP) outperforms the other types of ERPs for Brain-computer Interface (BCI), and thus it is widely employed. In order to apply SSVEP-based BCI to real life situations, it is important to improve the accuracy and transfer rate of the system. Aimed at this target, many SSVEP extraction methods have been proposed. All these methods are based directly on the properties of SSVEP, such as power and phase. In this study, we first filtered out the target frequencies from the original EEG to get a new signal and then computed the similarity between the original EEG and the new signal. Based on this similarity, SSVEP in the original EEG can be identified. This method is referred to as SOB (Similarity of Background). The SOB method is used to detect SSVEP in 1s-length and 3s-length EEG segments respectively. The accuracy of detection is compared with its peers computed by the widely-used Power Spectrum (PS) method and the Canonical Coefficient (CC) method. The comparison results illustrate that the SOB method can lead to a higher accuracy than the PS method and CC method when detecting a short period SSVEP signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP

‎There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems‎. ‎This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems‎. ‎The techniques are based on Power Spectrum Density Analysis (PSDA)‎, ‎Fast Fourier Transform (FFT)‎, ‎Hilbert‎- ‎Huang Transform (H...

متن کامل

LASSO based stimulus frequency recognition model for SSVEP BCIs

Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter time and lower error rate is one of the key points to develop a more efficient SSVEP-based BCI. To achieve this goal, we make use of the sparsity constraint of the least absolute shrinkage and selection operator (LASSO) for the extraction o...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

Hybrid SSVEP/P300 BCI Keyboard - Controlled by Visual Evoked Potential

This paper presents a two stage Brain Computer Interface (BCI) keyboard system that consumes Electroencephalography (EEG) signals based on two evoked potential detection methods: P300 and Steady-State Visual Evoked Potential (SSVEP). In order to develop a practical daily use EEG system, signals were captured with a standard low cost Emotiv-EPOC system and processed using OpenViBE platform. Fast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014